Atomistic deformation mechanisms in twinned copper nanospheres

نویسندگان

  • Jianjun Bian
  • Xinrui Niu
  • Hao Zhang
  • Gangfeng Wang
چکیده

In the present study, we perform molecular dynamic simulations to investigate the compression response and atomistic deformation mechanisms of twinned nanospheres. The relationship between load and compression depth is calculated for various twin spacing and loading directions. Then, the overall elastic properties and the underlying plastic deformation mechanisms are illuminated. Twin boundaries (TBs) act as obstacles to dislocation motion and lead to strengthening. As the loading direction varies, the plastic deformation transfers from dislocations intersecting with TBs, slipping parallel to TBs, and then to being restrained by TBs. The strengthening of TBs depends strongly on the twin spacing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals.

Nano-twinned copper exhibits an unusual combination of ultrahigh strength and high ductility, along with increased strain-rate sensitivity. We develop a mechanistic framework for predicting the rate sensitivity and elucidating the origin of ductility in terms of the interactions of dislocations with interfaces. Using atomistic reaction pathway calculations, we show that slip transfer reactions ...

متن کامل

Adaptive Hierarchical Multiscale Framework for Modeling the Deformation of Ultra-Strong Nano-structured Materials

The topic of this project belongs to focus area #3 of the NSF solicitation: " Micro/Nanoscale Phenom-enology and Metrology. " Nano-structured materials are extremely attractive for applications requiring high strength and ductility. Two such areas are: (1) nano-layered composites for future aerospace applications demanding high strength-to-weight ratios; and (2) next-generation interconnect and...

متن کامل

Size Effect and Deformation Mechanism in Twinned Copper Nanowires

Molecular dynamics simulations were performed to demonstrate the synergistic effects of the extrinsic size (nanowire length) and intrinsic size (twin boundary spacing) on the failure manner, yield strength, ductility and deformation mechanism of the twinned nanowires containing high density coherent twin boundaries CTBs paralleled to the nanowires’ axis. The twinned nanowires show an intense ex...

متن کامل

Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars

Molecular dynamics simulations are performed to study the atomistic mechanisms governing the pseudoelasticity and shape memory in nickel–titanium (NiTi) nanostructures. For a h110i – oriented nanopillar subjected to compressive loading–unloading, we observe either a pseudoelastic or shape memory response, depending on the applied strain and temperature that control the reversibility of phase tr...

متن کامل

Atomistic Simulation of Tensile Deformation Behavior of ∑5 Tilt Grain Boundaries in Copper Bicrystal

Experiments on polycrystalline metallic samples have indicated that Grain boundary (GB) structure can affect many material properties related to fracture and plasticity. In this study, atomistic simulations are employed to investigate the structures and mechanical behavior of both symmetric and asymmetric ∑5[0 0 1] tilt GBs of copper bicrystal. First, the equilibrium GB structures are generated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014